Percolation Phase Transition from Ionic Liquids to Ionic Liquid Crystals

Author:

Li Shen,Wang YantingORCID

Abstract

Abstract Due to their complex molecular structures and interactions, phase behaviors of complex fluids are quite often difficult to be identified by common phase transition analysis methods. Percolation phase transition, on the other hand, only monitors the degree of connection among particles without strict geometric requirements such as translational or orientational order, and thus suitable for pinpointing phase transitions of complex fluids. As typical complex fluids, ionic liquids (ILs) exhibit phases beyond the description of simple liquid theories. In particular, with an intermediate cationic side-chain length, ILs can form the nanoscale segregated liquid (NSL) state, which will eventually transform into the ionic liquid crystal (ILC) structure when the side chains are adequately long. However, the microscopic mechanism of this transformation is still unclear. In this work, by means of coarse-grained molecular dynamics simulation, we show that, with increasing cationic side-chain length, some local pieces of non-polar domains are gradually formed by side chains aligned in parallel inside the NSL phase, before an abrupt percolation phase transition happens when the system transforms into the ILC phase. This work not only identifies that the NSL to ILC phase transition is a critical phenomenon, but also demonstrates the importance of percolation theory to complex fluids.

Funder

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3