Magnetic dynamics of ferromagnetic long range order in icosahedral quasicrystal

Author:

Watanabe Shinji

Abstract

AbstractQuasicrystals lack translational symmetry and have unique lattice structures with rotational symmetry forbidden in periodic crystals. The electric state and physical property are far from complete understanding, which are the frontiers of modern matter physics. Recent discovery of the ferromagnetic long-range order in the rare-earth based icosahedral quasicrystal has made the breakthrough. Here, we first reveal the dynamical as well as static magnetic structure in the ferromagnetic long-range order in the terbium-based quasicrystal. The dynamical structure factor exhibits highly structured energy and wavenumber dependences beyond the crystalline-electric-field excitation. We find the presence of the magnetic excitation mode analog to magnon with unique hierarchical structure as well as the localized magnetic excitation with high degeneracy in the quasicrystal. Non-collinear and non-coplanar magnetic structure on the icosahedron is discovered to give rise to non-reciprocal magnetic excitation in the quasicrystal as well as non-reciprocal magnon in the periodic cubic 1/1 approximant. These findings afford illuminating insight into the magnetic dynamics in the broad range of the rare-earth-based quasicrystals and approximants.

Funder

Japan Society for the Promotion of Science

Japan Society for the Promotion of Science,Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3