Author:
Na Han Gil,Byoun Youngmin,Park Suyoung,Choi Myung Sik,Jin Changhyun
Abstract
Abstract
An unstable energy-unbalanced state such as superheating or supercooling is often unexpectedly observed because a factor of energy depends not only on the temperature but is a product of temperature (T) and entropy (S). Thus, at the same temperature, if the entropy is different, the total energy of the system can be different. In such cases, the temperature-change-rate cannot match the entropy-change-rate, which results in a hysteresis curve for the temperature/entropy relationship. Due to the difference between the temperature- and entropy-change-rates, properties of a material, such as the boiling and freezing points, can be extended from point to area. This study confirmed that depending on the heating rate, tin powders exhibit different melting points. Given the contemporary reinterpretation of many energy-non-equilibrium phenomena that have only been discussed on the basis of temperature, this study is expected to contribute to the actual expansion of scientific/engineering applications.
Funder
Technology development Program
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献