Synthesis, characterization, and the influence of energy of irradiation on optical properties of ZnO nanostructures

Author:

Abdelghani Ghazouan Mahmood,Ahmed Ali Ben,Al-Zubaidi Aseel Basim

Abstract

AbstractZinc oxide nanoparticles (NPs) are synthesized by the sol–gel method for optoelectronics, photonic, and medical applications. The as-synthesized NPs are irradiated with lasers with wavelengths of 1064 nm and 532 nm in an attempt to improve the particles' structural and functional properties. The NPs are characterized by means of X-ray diffraction, scanning and transmission electron microscopy techniques, atomic force microscopy, and ultraviolet–visible spectroscopy. The structural analysis shows that the particles have a polycrystalline hexagonal structure of the space group (P63mc). The average crystallite size of nanoparticles varies in the range of 13–15 nm after and before irradiation by a laser beam. The morphological characterization revealed the formation of agglomerates of NPs in the range of 42–46 nm A shift is observed in the absorption spectra after irradiation with a laser beam. This shift is due to the effect of irradiation on the sample’s electronic structure. This effect is confirmed by a decrease in the bandgap energy. The optical parameters are also deduced and discussed. The irradiation of ZnO nanoparticles by laser beams of wavelength 1064 nm and 532 nm decreases the size of the crystallites which increases their antibacterial activity. The biological activity of the NPS and in improving the efficacy of antibiotics are tested and analyzed. Results emphasized the positive role of ZnO-NPs in the above-mentioned application.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference39 articles.

1. Beaucage, G., et al. Nanostructured powders and their industrial application. Mater. Res. Soc. Symp. Proc. 520, (1998).

2. Global Information Inc. 2005, Nanomaterials (2008).

3. Freedonia Group, CT, USA, RNCOS E-Services Pvt. Ltd. (2008).

4. Nanotechnology Market Forecast (2011).

5. Research Report, CanBiotech Inc., Canada Electronics ca. Publications (2008).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3