High-resolution precipitation monitoring with a dense seismic nodal array

Author:

Hua Junlin,Wu Mengxi,Mulholland Jake P.,Neelin J. David,Tsai Victor C.,Trugman Daniel T.

Abstract

AbstractAccurate precipitation monitoring is crucial for understanding climate change and rainfall-driven hazards at a local scale. However, the current suite of monitoring approaches, including weather radar and rain gauges, have different insufficiencies such as low spatial and temporal resolution and difficulty in accurately detecting potentially destructive precipitation events such as hailstorms. In this study, we develop an array-based method to monitor rainfall with seismic nodal stations, offering both high spatial and temporal resolution. We analyze seismic records from 1825 densely spaced, high-frequency seismometers in Oklahoma, and identify signals from nine precipitation events that occurred during the one-month station deployment in 2016. After removing anthropogenic noise and Earth structure response, the obtained precipitation spatial pattern mimics the one from a nearby operational weather radar, while offering higher spatial (~ 300 m) and temporal (< 10 s) resolution. We further show the potential of this approach to monitor hail with joint analysis of seismic intensity and independent precipitation rate measurements, and advocate for coordinated seismological-meteorological field campaign design.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3