Diurnal evolution of urban tree temperature at a city scale

Author:

Vo Thuy Trang,Hu Leiqiu

Abstract

AbstractDespite the importance of urban trees’ surface temperature in assessing micro-climate interactions between trees and the surrounding environment, their diurnal evolution has been largely understudied at a city-wide scale due to a lack of effective thermal observations. By downscaling ECOSTRESS land surface temperature imaginary over New York City, we provide the first diurnal analysis of city-scale canopy temperature. Research reveals a remarkable spatial variation of the canopy temperature during daytime up to 5.6 K (standard deviation, STD), while the nighttime STD remains low at 1.7 K. Further, our analysis shows that the greenspace coverage and distance to bluespaces play an important role in cooling the local canopy during daytime, explaining 25.0–41.1% of daytime spatial variation of canopy temperatures while surrounding buildings modulate canopy temperature asymmetrically diurnally: reduced daytime warming and reduced nocturnal cooling. Built on space-borne observations and a flexible yet robust statistical method, our research design can be easily transferable to explore urban trees’ response to local climate across cities, highlighting the potentials of advancing the science and technologies for urban forest management.

Funder

NASA’s Interdisciplinary Research in Earth Science

NASA Health and Air Quality Applied Sciences Team

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3