Sand consolidation using enzyme-induced carbonate precipitation: new insights on temperature and particle size effects

Author:

Omarov Kamal,Alarifi Sulaiman A.,Mahmoud Mohamed,Kamal Muhammad Shahzad,Murtaza Mobeen,Humam Abdulmohsen,AlAhmari Manar M.

Abstract

AbstractSand production is a major issue in the oil and gas industry. Unconsolidated sand can be produced with the oil or gas a cause many issues to the production facilities. Enzyme-induced carbonate precipitation (EICP) is a promising method for sand consolidation and is characterized by its environment friendliness. Numerous studies have shown its effectiveness in ambient conditions. However, oil and gas downhole well operations are high pressure and high-temperature conditions. The objective of this study is to investigate effect of high temperature on EICP reaction and its efficiency in terms of uniformity to consolidate different types of sand samples. In this paper, the behavior of EICP solutions is examined in high temperatures from 25 to 90 °C. The study shows that high temperature environment doesn’t handicap efficiency but in contrast it can favor the reaction if optimum concentration of reactants has been selected. The temperature effect is also discussed in terms of controllability of reaction which can favor application of reaction. Qualitive analysis shows when EICP solutions containing more than 50,000 ppm of metal ions and stoichiometrically surplus urea requires exposure to heat for reaction progress. The effect of sand particle size and its implication on the consolidation process was examined. Particle size of fine and medium sand ranged from 125 to 250 µm and 250 to 425 µm respectively while for coarse sand 70% sand particle size was between 425 and 700 µm. Designed EICP solutions achieve 9,000 psi for medium and almost 5,000 psi intrinsic specific energy for coarse sand samples. However, treated samples were subject to non-uniform distribution of strength of which can be up to 8,000 psi difference between top and bottom half of the samples.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3