Author:
Xiao Minhe,Zhou Peng,Wang Ziling,Xiao Hanxianzhi,Chen Xiao,Jiang Rong,Wang Yaping
Abstract
AbstractHematopoietic stem cells show biological manifestations of aging, diminished hematopoietic function and abnormal differentiation, which can lead to leukemia. It is therefore important to explore the mechanism underlying hematopoietic stem cell aging to develop strategies for delaying the process. Our evaluations revealed that the number of bone marrow hematopoietic cells (BMHCs) started to decrease significantly after 45 years of age, and the number of senescent BMHCs, as determined by senescence-associated beta-galactosidase staining, gradually increased with age. In addition, BMHCs from individuals over 45 years of age presented with notably reduced proliferative capacity, increased G1-phase cell cycle arrest, and significantly decreased generation of mixed colony forming units, which suggests that BMHCs enter senescence during middle age. Furthermore, we observed significantly lower antioxidant capacity and a significant increase in oxidative damage products, a gradual increase in the expression of senescence-associated proteins and genes, and a gradual decrease in the expression of cell cycle related proteins in BMHCs after middle age. Taken together, these findings offer both a theoretical and experimental basis for better understanding of the senescence progression of BMHCs and the optimal timing for anti-senescence drug interventions in clinical practice.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献