Sputum handling for rheology

Author:

Esteban Enjuto Lydia,Robert de Saint Vincent Matthieu,Maurin Max,Degano Bruno,Bodiguel Hugues

Abstract

AbstractThe rheology of sputum is viewed as a powerful emerging biophysical marker for monitoring muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). However, there is no unified practice to process sputa from collection to analysis, which can lead to highly variable, and sometimes inconsistent results. The main objective of this study is to bring light into the handling of sputum samples to establish a standardised and robust protocol before rheological measurements. Sputum collected from 22 CF and 10 NCFB adults, was divided into control (vortexed and fresh: non-heated and non-frozen) and three treated conditions (either non-vortexed, heated or frozen). In addition, 6 CF expectorations were used to study the dynamics of ageing over 24 h. Sputum’s mechanical properties were measured with a rotational rheometer to obtain their properties at rest, elastic ($$G'$$ G ) and viscous moduli ($$G''$$ G ), and at the onset of flow, critical deformation ($$\gamma _c$$ γ c ) and critical stress ($$\sigma _c$$ σ c ). We demonstrate that heating sputum is completely destructive while freezing sputa at $$-80\,\,^{\circ }\hbox {C}$$ - 80 C has no discernible effect on their rheology. We also show that the variability of rheological measurements largely resulted from the sample’s macroscopic heterogeneity, and can be greatly reduced by non-destructive vortex homogenisation. Finally, we observed contrasted ageing effects as a fonction of purulence: while the viscoelasticity of purulent samples reduced by half within 6 h after collection, semi-purulent samples did not evolve. These results guide towards a robust unified protocol for simple sputum handling in rheometry. We therefore suggest to vortex and snap freeze sputum samples immediately after collection when direct testing is not possible.

Funder

Agence Nationale de la Recherche

Association Nationale de la Recherche et de la Technologie

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3