Fabrication of CP-Ti structure with controllable wettability using powder bed fusion and eco-friendly post-process

Author:

Oh Won-Jung,Kim Donghyun,Kim Dong-Hyun,Chun Doo-Man,Ha Jeonghong,Kim Chung-Soo

Abstract

AbstractHydrophobic surfaces have a wide range of applications, such as water harvesting, self-cleaning, and anti-biofouling. However, traditional methods of achieving hydrophobicity often involve the use of toxic materials such as fluoropolymers. This study aims to create controllable wettability surfaces with a three-dimensional geometry using a laser base powder bed fusion (PBF) process with commercially pure titanium (CP-Ti) and silicone oil as non-toxic materials. The optimal PBF process parameters for fabricating micropillar structures, which are critical for obtaining the surface roughness necessary for achieving hydrophobic properties, were investigated experimentally. After fabricating the micropillar structures using PBF, their surface energy was reduced by treatment with silicone oil. Silicone oil provides a low-surface-energy coating that contributes to the water-repellent nature of hydrophobic surfaces. The wettability of the treated CP-Ti surfaces was evaluated based on the diameter of the pillars and the space between them. The structure with the optimal diameter and spacing of micropillars exhibited a high contact angle (156.15°). A pronounced petal effect (sliding angle of 25.9°) was achieved because of the morphology of the pillars, indicating the controllability of wetting. The micropillar diameter, spacing, and silicone oil played crucial roles in determining the water contact and sliding angle, which are key metrics for surface wettability.

Funder

Ministry of Trade, Industry and Energy

Ministry of Science and ICT, South Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3