Stream instabilities in optical-field ionization of a monatomic dilute neutral gas in fully relativistic regime

Author:

Ghorbanalilu M.

Abstract

AbstractStream instabilities arising from anisotropic electron velocity distribution function (EVDF) are discussed in the optical-field ionization mechanism of a monatomic dilute gas by a circularly polarized laser beam in a fully relativistic regime. It is shown that a relativistically rotating electron beam is derived by a circularly polarized laser field with ($$p_z>p_\perp$$ p z > p ). We show that the following ionization and before collisions thermalize the electrons, the plasma undergoes Buneman and Weibel instabilities. The Weibel and Buneman modes are co-propagating with k normal to the streaming direction. The theoretical results reveal that for the threshold of the relativistic regime ($$a_0\approx 1$$ a 0 1 ), instabilities are aperiodic and grow independently. However, by increasing the laser intensity for $$a_0>1$$ a 0 > 1 , two instabilities are coupled. The coupling process increased the growth rate of Weibel instability, while the Buneman instability experienced a decrement in its growth rate. For more intense laser radiation, both instabilities are broken into different oscillatory and aperiodic modes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3