Effect of pigmentation intensity of trabecular meshwork cells on mechanisms of micropulse laser trabeculoplasty

Author:

Shimizu Shota,Honjo Megumi,Sugimoto Koichiro,Okamoto Michiaki,Aihara Makoto

Abstract

AbstractThe intraocular pressure (IOP)-lowering mechanisms of micropulse laser trabeculoplasty (MLT) remain unclear. The present study was performed to investigate the mechanism of action of MLT, and to determine whether the pigmentation intensity of trabecular meshwork (TM) cells is associated with the treatment effects. Primary human TM cells were exposed to melanin granules to artificially introduce different levels of pigmentation. Micropulse (MP) laser irradiation was performed, and interleukin (IL)-1α/β, matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinases (TIMPs), and extracellular matrix (ECM) protein expression were evaluated by RT-qPCR and immunocytochemistry. IL-1α/β and MMP-1, -3, and -9 mRNA expression were significantly upregulated at 4 and 24 h after MP laser irradiation, respectively, but there were no significant changes in TIMP expression. The extent of these upregulation was greater in cells with strong pigmentation intensity. Protein expressions of fibronectin and collagen I were significantly decreased in cells with strong staining intensity. These results suggested that MP laser irradiation alter the MMP/TIMP ratio and enhance ECM turnover, resulting in increased outflow of aqueous humor. The pigmentation intensity of the TM tissues may affect the treatment efficacy of MLT, because TM cells with strong staining intensity showed a significantly enhanced response to MP laser irradiation.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3