A computational comparison of radiofrequency and pulsed field ablation in terms of lesion morphology in the cardiac chamber

Author:

Gómez-Barea Mario,García-Sánchez Tomás,Ivorra Antoni

Abstract

AbstractPulsed Field Ablation (PFA) has been developed over the last years as a novel electrical ablation technique for treating cardiac arrhythmias. It is based on irreversible electroporation which is a non-thermal phenomenon innocuous to the extracellular matrix and, because of that, PFA is considered to be safer than the reference technique, Radiofrequency Ablation (RFA). However, possible differences in lesion morphology between both techniques have been poorly studied. Simulations including electric, thermal and fluid physics were performed in a simplified model of the cardiac chamber which, in essence, consisted of a slab of myocardium with blood in motion on the top. Monopolar and bipolar catheter configurations were studied. Different blood velocities and catheter orientations were assayed. RFA was simulated assuming a conventional temperature-controlled approach. The PFA treatment was assumed to consist in a sequence of 20 biphasic bursts (100 µs duration). Simulations indicate that, for equivalent lesion depths, PFA lesions are wider, larger and more symmetrical than RFA lesions for both catheter configurations. RFA lesions display a great dependence on blood velocity while PFA lesions dependence is negligible on it. For the monopolar configuration, catheter angle with respect to the cardiac surface impacted both ablation techniques but in opposite sense. The orientation of the catheter with respect to blood flow direction only affected RFA lesions. In this study, substantial morphological differences between RFA and PFA lesions were predicted numerically. Negligible dependence of PFA on blood flow velocity and direction is a potential important advantage of this technique over RFA.

Funder

Universitat Pompeu Fabra

H2020 Marie Skłodowska-Curie Actions

Ministerio de Ciencia, Innovación y Universidades

Agencia Estatal de Investigación

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3