Durability analysis of metakaolin recycled concrete under sulphate dry and wet cycle

Author:

Zhong Chuheng,Wang Dongping,Zhang Lijuan,Mao Weiqi,Xing Sijia,Chen Jinhui,Xiao Yuan

Abstract

AbstractThis study aims to enhance the durability, cost-effectiveness, and sustainability of recycled fine aggregate concrete (RFAC) subjected to the combined effects of wet-dry cycles and sulfate erosion. Dry–wet cycle tests were conducted in RFAC with different admixtures of biotite metakaolin (MK) and 15% fly ash (FA) mix (M) under 5% sulfate erosion environment. The effect of 0%, 30%, 60% and 90% recycled fine aggregate (RFA) replacement of natural fine aggregate on mass loss, cubic compressive strength, relative dynamic modulus test of RFAC, damage modeling and prediction of damage life of concrete were investigated. The results showed that the concrete cubic compressive strength and relative dynamic modulus were optimal for recycled concrete at 15% MK biotite dosing and 60% RFA substitution, and its maximum service life was accurately predicted to be about 578 cycles under 5% sulfate dry–wet cycling using Weibull function model. This study is pioneering in addressing the durability of RFAC under sulfate attack combined with wet-dry cycling, employing a novel approach of incorporating MK and FA into RFAC. The findings highlight the practical application potential for using MK and FA in RFAC to produce durable and sustainable construction materials, particularly in sulfate-exposed environments. This research addresses a critical challenge in the construction industry, providing valuable insights for developing more durable and eco-friendly construction materials and contributing to long-term sustainability goals.

Funder

National Natural Science Foundation of China

State Key Laboratory of Bridge Structure Health and Safety

Project of Outstanding Young and Middle-aged Scientific and Technological Innovation Team in Hubei Universities and Colleges

Doctoral Start-up Fund of Hubei University of Technology

Wuhan Knowledge Innovation Special Aurora Program Project

Publisher

Springer Science and Business Media LLC

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3