Effects of Al2O3, SiO2 nanoparticles, and g-c3n4 nanosheets on biocement production from agricultural wastes

Author:

Abdelsalam Essam M.,Samer Mohamed,Seifelnasr Amira,Moselhy Mohamed A.,Ibrahim Hatem H. A.,Faried Maryam,Attia Yasser A.

Abstract

AbstractEnvironmental issues are brought up concerning the production of Portland cement. As a result, biocement serves as a reliable substitute for Portland cement in green construction projects. This study created a brand-new technique to create high-quality biocement from agricultural wastes. The technique is based on nanomaterials that improve and accelerate the "Microbially Induced Calcite Precipitation (MICP)" process, which improves the quality of the biocement produced. The mixture was further mixed with the addition of 5 mg/l of graphitic carbon nitride nanosheets (g-C3N4 NSs), alumina nanoparticles (Al2O3 NPs), or silica nanoparticles (SiO2 NPs). The cement: sand ratio was 1:3, the ash: cement ratio was 1:9, and water: cement ratio was 1:2. Cubes molds were prepared, and then cast and compacted. Subsequent de-molding, all specimens were cured in nutrient broth-urea (NBU) media until testing at 28 days. The medium was replenished at an interval of 7 days. The results show that the addition of 5 mg/l of g-C3N4 NSs with corncob ash delivered the highest “Compressive Strength” and the highest “Flexural Strength” of biocement mortar cubes of 18 and 7.6 megapascal (MPa), respectively; and an acceptable “Water Absorption” (5.42%) compared to all other treatments. This treatment delivered a “Compressive Strength”, “Flexural Strength”, and “Water Absorption” reduction of 1.67, 1.26, and 1.21 times the control (standard Portland cement). It was concluded that adding 5 mg/l of g-C3N4 NSs to the cementitious mixture enhances its properties, where the resulting biocement is a promising substitute for conventional Portland cement. Adding nanomaterials to cement reduces its permeability to ions, increasing its strength and durability. The use of these nanomaterials can enhance the performance of concrete infrastructures. The use of nanoparticles is an effective solution to reduce the environmental impact associated with concrete production.

Funder

Science, Technology & Innovation Funding Authority (STDF) in cooperation with Egyptian Knowledge Bank

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3