Author:
Taniguchi Yuka,Wakabayashi Hiroshi,Yoneyama Hiroto,Chen Zhuoqing,Morino Kei,Otosaki Akiko,Yamada Masako,Inaki Anri,Kayano Daiki,Kinuya Seigo
Abstract
AbstractThe use of effective shielding materials against radiation is important among medical staff in nuclear medicine. Hence, the current study investigated the shielding effects of a commercially available tungsten apron using gamma ray measuring instruments. Further, the occupational radiation exposure of nurses during 131I-meta-iodo-benzyl-guanidine (131I-MIBG) therapy for children with high-risk neuroblastoma was evaluated. Attachable tungsten shields in commercial tungsten aprons were set on a surface-ray source with 131I, which emit gamma rays. The mean shielding rate value was 0.1 ± 0.006 for 131I. The shielding effects of tungsten and lead aprons were evaluated using a scintillation detector. The shielding effect rates of lead and tungsten aprons against 131I was 6.3% ± 0.3% and 42.1% ± 0.2% at 50 cm; 6.1% ± 0.5% and 43.3% ± 0.3% at 1 m; and 6.4% ± 0.9% and 42.6% ± 0.6% at 2 m, respectively. Next, we assessed the occupational radiation exposure during 131I-MIBG therapy (administration dose: 666 MBq/kg, median age: 4 years). The total occupational radiation exposure dose per patient care per 131I-MIBG therapy session among nurses was 0.12 ± 0.07 mSv. The average daily radiation exposure dose per patient care among nurses was 0.03 ± 0.03 mSv. Tungsten aprons had efficient shielding effects against gamma rays and would be beneficial to reduce radiation exposures per patient care per 131I-MIBG therapy session.
Funder
JSPS Grant-in-Aid for Scientific Research
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献