Experimental study on ultrasonic irradiation for enhancing coalbed methane recovery

Author:

Ding Xin,Hou Jing,Xiao Xiaochun

Abstract

AbstractThe present study proposes the use of a new ultrasonic irradiation method to enhance permeability and desorption for gas recovery from low-permeability coal reservoirs. A triaxial stress ultrasonic irradiation test apparatus was developed specifically for coal, considering the properties of gas adsorption, migration, and sound intensity, and providing a simultaneous measurement of gas flux, to investigated the deformation and temperature of coal samples obtained from the Fuxin coal field by permeability and desorption experiments. With the ultrasonic irradiation duration, the permeability of coal improved gradually with unequal variation, accompanied by the Klinkenberg effect where it decreased rapidly and then increased slowly with increasing gas pressure. The ability to desorb coal was enhanced by higher sound intensity ultrasound irradiation, and the volume of gas desorption was much greater than that of the sample without mange, the temperature and strain were demonstrated as a “J shaped” curve. An X-ray computer tomography (CT) technique was used to visualise the meso- or macro-cracks in the coal sample at pre- and post- ultrasonic irradiation, consequently, fractures expanded under the irradiation of ultrasonic waves. A permeability and desorption model was developed to describe the improvement of coal seam gas production capacity under ultrasonic irradiation, which introduced effective sound pressure.

Funder

The Liaoning Province Doctor Startup Fund

The Program Funded by Liaoning Province Education Administration

The College Students’ innovation and entrepreneurship training program of LNTU

The Discipline Innovation Team of Liaoning Technical University

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3