Author:
Langner Thomas,Sieber Tim,Rietig Anja,Merk Virginia,Pfeifer Lutz,Acker Jörg
Abstract
AbstractThe present study deals with the phenomenological observation of the corrosion of the positive electrode foil of lithium-ion batteries containing LiNi0.6Co0.2Mn0.2O2 (NMC) as cathode material. Due to the presence of moisture, localized water accumulation is formed on the NMC surface. The water absorbed by the electrolyte reacts with the NMC under Li+/H+ exchange and the resulting pH increase leads to dissolution of the carrier foil and characteristic salt-like blooms on the NMC surface. With the increase in the relative area occupied by the holes in the aluminum foil per time, a sufficiently suitable parameter was found with which to quantitatively determine the extent of corrosion. The degree of degradation depends on time and ambient humidity. It was shown that functional recycling with the water jet method is no longer applicable for degraded foils, since the mechanical stability of the foils decreases as corrosion progresses. Lithium, aluminum, sulfur and oxygen were detected in the blooms using SEM–EDX and Laser-Induced-Breakdown-Spectroscopy (LIBS). The underlying NMC layer was found to contain mainly aluminum and significantly lower lithium content than the non-degraded material. SEM and Raman microscopy analyses also showed that the active material is also locally degraded and therefore no longer suitable for functional recycling.
Funder
Ministry of the Environment, Climate Protection and the Energy Sector Baden-Wuerttemberg
Brandenburgische TU Cottbus-Senftenberg
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献