Numerical material testing for discontinuous fiber composites using statistically similar representative volume elements

Author:

Sasagawa Takashi,Tanaka Masato,Omote Ryuji,Balzani Daniel

Abstract

AbstractA computational method is proposed in order to predict mechanical properties of discontinuous fiber composites (DFCs) based on computational homogenization with statistically similar representative volume elements (SSRVEs). The SSRVEs are obtained by reducing the complexity of real microstructures based on statistical measures. Specifically, they are constructed by minimizing an objective function defined in terms of differences between the power spectral density of target microstructures and that of the SSRVEs. In this paper, an extended construction method is proposed based on the reformulation of the objective function by integer design variables. The proposed method is applied to the representation of a real material, namely glass fiber reinforced nylon 6. The results show that the mechanical properties computed by numerical material tests using the SSRVEs agree with experimental results. Therefore, it is found that the nonlinear mechanical properties of the DFC can be suitably predicted by the proposed method without any special calibration to experiments performed on the composites.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3