Translating synthetic natural language to database queries with a polyglot deep learning framework

Author:

Bazaga Adrián,Gunwant Nupur,Micklem Gos

Abstract

AbstractThe number of databases as well as their size and complexity is increasing. This creates a barrier to use especially for non-experts, who have to come to grips with the nature of the data, the way it has been represented in the database, and the specific query languages or user interfaces by which data are accessed. These difficulties worsen in research settings, where it is common to work with many different databases. One approach to improving this situation is to allow users to pose their queries in natural language. In this work we describe a machine learning framework, Polyglotter, that in a general way supports the mapping of natural language searches to database queries. Importantly, it does not require the creation of manually annotated data for training and therefore can be applied easily to multiple domains. The framework is polyglot in the sense that it supports multiple different database engines that are accessed with a variety of query languages, including SQL and Cypher. Furthermore Polyglotter supports multi-class queries. Good performance is achieved on both toy and real databases, as well as a human-annotated WikiSQL query set. Thus Polyglotter may help database maintainers make their resources more accessible.

Funder

Wellcome Trust

Innovate UK

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NLSQL: Generating and Executing SQL Queries via Natural Language Using Large Language Models;2023 International Conference on Advanced Computing Technologies and Applications (ICACTA);2023-10-06

2. A Peer Review on Natural Language Interface: Various Challenges and Scope;2023 International Conference on Disruptive Technologies (ICDT);2023-05-11

3. Modelo de Autentificación de Doble Factor;Innovación y Software;2023-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3