Vibration characteristics of an active mounting system for motion control of a plate-like structure in future mobilities

Author:

Hong Dongwoo,Qiu Yang,Kim Byeongil

Abstract

AbstractThe vibration and noise caused by electric motors in hybrid and electric vehicles (EVs) generate complex signals with a mid-frequency band, which causes uncomfortable vibration and noise. In order to isolate the vibration and noise, active engine mounting systems based on smart structures have attracted attention. Thus, in this study, the vibration attenuation performance was validated through simulation and feasibility experiments by applying an active mounting system using a piezoelectric stack actuator. A plate structure with three paths, consisting of two passive paths and one active path, was modeled using the lumped parameter method. The source part was excited by a sinusoidal and modulated signal with a mid-frequency band to validate the vibration attenuation performance. Furthermore, (1) mathematical modeling with a source-path-receiver structure was proposed based on lumped parameter modeling, (2) normalized least mean square (NLMS) and multi-NLMS algorithms were applied to implement motion control, and (3) a principal experimental setup was designed to validate the simulation results. Through this process, the vibration attenuation performance of the proposed active mount structure was validated.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3