Probability density function for random photon steps in a binary (isotropic-Poisson) statistical mixture

Author:

Binzoni Tiziano,Mazzolo Alain

Abstract

AbstractMonte Carlo (MC) simulations allowing to describe photons propagation in statistical mixtures represent an interest that goes way beyond the domain of optics, and can cover, e.g., nuclear reactor physics, image analysis or life science just to name a few. MC simulations are considered a “gold standard” because they give exact solutions (in the statistical sense), however, in the case of statistical mixtures their implementation is often extremely complex. For this reason, the aim of the present contribution is to propose a new approach that should allow us in the future to simplify the MC approach. This is done through an explanatory example, i.e.; by deriving the ‘exact’ analytical expression for the probability density function of photons’ random steps (single step function, SSF) propagating in a medium represented as a binary (isotropic-Poisson) statistical mixture. The use of the SSF reduces the problem to an ‘equivalent’ homogeneous medium behaving exactly as the original binary statistical mixture. This will reduce hundreds MC simulations, allowing to obtain one set of wanted parameters, to only one equivalent simple MC simulation. To the best of our knowledge the analytically ‘exact’ SSF for a binary (isotropic-Poisson) statistical mixture has never been derived before.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3