Drying kinetics, thermodynamic properties and physicochemical characteristics of Rue leaves

Author:

Mabasso Geraldo Acácio,Cabral Jennifer Cristhine Oliveira,Barbosa Karine Feliciano,Resende Osvaldo,de Oliveira Daniel Emanuel Cabral,de Almeida Adrielle Borges

Abstract

AbstractGenerally, medicinal plants are harvested with high amount of water, so it is essential to subject the product to drying as soon as possible to prevent degradation before application. Most compounds from medicinal plants are sensitive to drying processes, so it is important to adjust the drying conditions. The objective of this study was to describe the drying of Rue (Ruta chalepensis L.) leaves, select the models that best fit each drying condition, determine the activation energy and thermodynamic properties of the leaves, and evaluate their quality after drying. Leaves were harvested with moisture content of 3.55 ± 0.05 kg water kg−1dry matter and subjected to drying at temperatures of 40, 50, 60 and 70 °C. Valcam model showed the best fit to represent the drying kinetics of Rue leaves at temperatures of 40 and 70 °C, and Midilli model proved to be better for the temperatures of 50 and 60 °C. Effective diffusion coefficient increased linearly with the increase in drying air temperature, and the activation energy was 60.58 kJ mol−1. Enthalpy, entropy and Gibbs free energy values ranged from 57.973 to 57.723 kJ mol−1, from − 0.28538 to − 0.28614 kJ mol−1 K−1 and from 147.34 to 155.91 kJ mol−1, respectively, for the temperature range of 40–70 °C. Drying air temperature promoted darkening or tendency to loss of green color; increase in drying air temperature leads to greater discoloration, as well as a higher concentration of total phenolic compounds (about 221.10 mg GAE mL−1 g–1 dm), with a peak at temperature of 60 °C.

Funder

Federal Institute of Education, Science and Technology Goiano

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3