Characterizing 5-oxoproline sensing pathways of Salmonella enterica serovar typhimurium

Author:

Stern Einav,Shterzer Naama,Mills Erez

Abstract

Abstract5-Oxoproline (5OP) is a poorly researched ubiquitous natural amino acid found in all life forms. We have previously shown that Salmonella enterica serovar Typhimurium (Salmonella) responds to 5OP exposure by reducing cyclic-di-GMP levels, and resultant cellulose dependent cellular aggregation in a YfeA and BcsA dependent manner. To understand if 5OP was specifically sensed by Salmonella we compared the interaction of Salmonella with 5OP to that of the chemically similar and biologically relevant molecule, l-proline. We show that l-proline but not 5OP can be utilized by Salmonella as a nutrient source. We also show that 5OP but not l-proline regulates cellulose dependent cellular aggregation. These results imply that 5OP is utilized by Salmonella as a specific signal. However, l-proline is a 5OP aggregation inhibitor implying that while it cannot activate the aggregation pathway by itself, it can inhibit 5OP dependent activation. We then show that in a l-proline transporter knockout mutant l-proline competition remain unaffected, implying sensing of 5OP is extracellular. Last, we identify a transcriptional effect of 5OP exposure, upregulation of the mgtCBR operon, known to be activated during host invasion. While mgtCBR is known to be regulated by both low pH and l-proline starvation, we show that 5OP regulation of mgtCBR is indirect through changes in pH and is not dependent on the 5OP chemical structure similarity to l-proline. We also show this response to be PhoPQ dependent. We further show that the aggregation response is independent of pH modulation, PhoPQ and MgtC and that the mgtCBR transcriptional response is independent of YfeA and BcsA. Thus, the two responses are mediated through two independent signaling pathways. To conclude, we show Salmonella responds to 5OP specifically to regulate aggregation and not specifically to regulate gene expression. When and where in the Salmonella life cycle does 5OP sensing takes place remains an open question. Furthermore, because 5OP inhibits c-di-GMP through the activation of an external sensor, and does not require an internalization step like many studied biofilm inhibitors, 5OP or derivatives might be developed into useful biofilm inhibitors.

Funder

Israeli Science Foundation

Ministry of Science and Technology, Israel

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3