Charge density redistribution with pressure in a zeolite framework

Author:

Stachowicz Marcin,Gajda Roman,Huć Agnieszka,Parafiniuk Jan,Makal Anna,Sutuła Szymon,Fertey Pierre,Woźniak Krzysztof

Abstract

AbstractAs a result of external compression applied to crystals, ions relax, in addition to shortening the bond lengths, by changing their shape and volume. Modern mineralogy is founded on spherical atoms, i.e., the close packing of spheres, ionic or atomic radii, and Pauling and Goldschmidt rules. More advanced, quantum crystallography has led to detailed quantitative studies of electron density in minerals. Here we innovatively apply it to high-pressure studies up to 4.2 GPa of the mineral hsianghualite. With external pressure, electron density redistributes inside ions and among them. For most ions, their volume decreases; however, for silicon volume increases. With growing pressure, we observed the higher contraction of cations in bonding directions, but a slighter expansion towards nonbonding directions. It is possible to trace the spatial redistribution of the electron density in ions even at the level of hundredths parts of an electron per cubic angstrom. This opens a new perspective to experimentally characterise mineral processes in the Earth’s mantle. The use of diamond anvil cells with quantum crystallography offers more than interatomic distances and elastic properties of minerals. Interactions, energetic features, a branch so far reserved only to the first principle DFT calculations at ultra-high-pressures, become available experimentally.

Funder

EU Framework Programme for Research and Innovation HORIZON 2020

Polish National Science Centre

SOLEIL Synchrotron, France

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference28 articles.

1. Compton, A. H. The distribution of the electrons in atoms. Nature 95, 343–344 (1915).

2. Kepler, J., Hardie, C. G., Mason, B. J. & Whyte, L. L. The Six-cornered Snowflake.[Edited and Translated by Colin Hardie. With Essays by LL Whyte and BJ Mason. With Illustrations.] Lat. & Eng. (Clarendon Press, 1966).

3. Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929).

4. Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. (International Union of Crystallography Monographs on Crystallography 12, 2001).

5. Pauling, L. The Nature of the Chemical Bond: An Introduction to Modern Structural Chemistry. (Cornell University Press, 1960).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3