Extreme diversity of 12 cations in folding ALS-linked hSOD1 unveils novel hSOD1-dependent mechanisms for Fe2+/Cu2+-induced cytotoxicity

Author:

Lim Liangzhong,Kang Jian,Song Jianxing

Abstract

Abstract153-Residue copper-zinc superoxide dismutase 1 (hSOD1) is the first gene whose mutation was linked to FALS. To date, > 180 ALS-causing mutations have been identified within hSOD1, yet the underlying mechanism still remains mysterious. Mature hSOD1 is exceptionally stable constrained by a disulfide bridge to adopt a Greek-key β-barrel fold that accommodates copper/zinc cofactors. Conversely, nascent hSOD1 is unfolded and susceptible to aggregation and amyloid formation, requiring Zn2+ to initiate folding to a coexistence of folded and unfolded states. Recent studies demonstrate mutations that disrupt Zn2+-binding correlate with their ability to form toxic aggregates. Therefore, to decode the role of cations in hSOD1 folding provides not only mechanistic insights, but may bear therapeutic implications for hSOD1-linked ALS. Here by NMR, we visualized the effect of 12 cations: 8 essential for humans (Na+, K+, Ca2+, Zn2+, Mg2+, Mn2+, Cu2+, Fe2+), 3 mimicking zinc (Ni2+, Cd2+, Co2+), and environmentally abundant Al3+. Surprisingly, most cations, including Zn2+-mimics, showed negligible binding or induction for folding of nascent hSOD1. Cu2+ exhibited extensive binding to the unfolded state but led to severe aggregation. Unexpectedly, for the first time Fe2+ was deciphered to have Zn2+-like folding-inducing capacity. Zn2+ was unable to induce folding of H80S/D83S-hSOD1, while Fe2+ could. In contrast, Zn2+ could trigger folding of G93A-hSOD1, but Fe2+ failed. Notably, pre-existing Fe2+ disrupted the Zn2+-induced folding of G93A-hSOD1. Comparing with the ATP-induced folded state, our findings delineate that hSOD1 maturation requires: (1) intrinsic folding capacity encoded by the sequence; (2) specific Zn2+-coordination; (3) disulfide formation and Cu-load catalyzed by hCCS. This study unveils a previously-unknown interplay of cations in governing the initial folding of hSOD1, emphasizing the pivotal role of Zn2+ in hSOD1-related ALS and implying new hSOD1-dependent mechanisms for Cu2+/Fe2+-induced cytotoxicity, likely relevant to aging and other diseases.

Funder

Ministry of Education of Singapore

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3