Protein conformational entropy is not slaved to water

Author:

Marques Bryan S.,Stetz Matthew A.,Jorge Christine,Valentine Kathleen G.,Wand A. Joshua,Nucci Nathaniel V.

Abstract

AbstractConformational entropy can be an important element of the thermodynamics of protein functions such as the binding of ligands. The observed role for conformational entropy in modulating molecular recognition by proteins is in opposition to an often-invoked theory for the interaction of protein molecules with solvent water. The “solvent slaving” model predicts that protein motion is strongly coupled to various aspects of water such as bulk solvent viscosity and local hydration shell dynamics. Changes in conformational entropy are manifested in alterations of fast internal side chain motion that is detectable by NMR relaxation. We show here that the fast-internal side chain dynamics of several proteins are unaffected by changes to the hydration layer and bulk water. These observations indicate that the participation of conformational entropy in protein function is not dictated by the interaction of protein molecules and solvent water under the range of conditions normally encountered.

Funder

National Institutes of Health

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3