Space-time characterization of community noise and sound sources in Accra, Ghana

Author:

Clark Sierra N.,Alli Abosede S.,Nathvani Ricky,Hughes Allison,Ezzati Majid,Brauer Michael,Toledano Mireille B.,Baumgartner Jill,Bennett James E.,Nimo James,Bedford Moses Josephine,Baah Solomon,Agyei-Mensah Samuel,Owusu George,Croft Briony,Arku Raphael E.

Abstract

AbstractUrban noise pollution is an emerging public health concern in growing cities in sub-Saharan Africa (SSA), but the sound environment in SSA cities is understudied. We leveraged a large-scale measurement campaign to characterize the spatial and temporal patterns of measured sound levels and sound sources in Accra, Ghana. We measured sound levels and recorded audio clips at 146 representative locations, involving 7-days (136 locations) and 1-year measurements between 2019 and 2020. We calculated metrics of noise levels and intermittency and analyzed audio recordings using a pre-trained neural network to identify sources. Commercial, business, and industrial areas and areas near major roads had the highest median daily sound levels (LAeq24hr: 69 dBA and 72 dBA) and the lowest percentage of intermittent sound; the vice-versa was found for peri urban areas. Road-transport sounds dominated the overall sound environment but mixtures of other sound sources, including animals, human speech, and outdoor music, dominated in various locations and at different times. Environmental noise levels in Accra exceeded both international and national health-based guidelines. Detailed information on the acoustical environmental quality (including sound levels and types) in Accra may guide environmental policy formulation and evaluation to improve the health of urban residents.

Funder

Wellcome Trust

CIHR PhD scholarship

Imperial College Presidents PhD scholarship

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3