Intracellular detection and communication of a wireless chip in cell

Author:

Yang Mimi X.,Hu Xiaolin,Akin Demir,Poon Ada,Wong H.-S Philip

Abstract

AbstractThe rapid growth and development of technology has had significant implications for healthcare, personalized medicine, and our understanding of biology. In this work, we leverage the miniaturization of electronics to realize the first demonstration of wireless detection and communication of an electronic device inside a cell. This is a significant forward step towards a vision of non-invasive, intracellular wireless platforms for single-cell analyses. We demonstrate that a 25 $$\upmu $$ μ m wireless radio frequency identification (RFID) device can not only be taken up by a mammalian cell but can also be detected and specifically identified externally while located intracellularly. The S-parameters and power delivery efficiency of the electronic communication system is quantified before and after immersion in a biological environment; the results show distinct electrical responses for different RFID tags, allowing for classification of cells by examining the electrical output noninvasively. This versatile platform can be adapted for realization of a broad modality of sensors and actuators. This work precedes and facilitates the development of long-term intracellular real-time measurement systems for personalized medicine and furthering our understanding of intrinsic biological behaviors. It helps provide an advanced technique to better assess the long-term evolution of cellular physiology as a result of drug and disease stimuli in a way that is not feasible using current methods.

Funder

National Science Foundation, United States

Stanford Graduate Fellowship

National Institutes of Health

Chan Zuckerberg Initiative

Stanford SystemX Alliance

Multidisciplinary University Research Initiative

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microfluidic Biosensor for the In Vitro Electrophysiological Characterization of Actin Bundles;Journal of Microelectromechanical Systems;2024-06

2. Tunable Segmented Loop Antenna Reader for Miniaturized Chipless Tag Detection;2024 18th European Conference on Antennas and Propagation (EuCAP);2024-03-17

3. A disposable reader-sensor solution for wireless temperature logging;Device;2023-12

4. Electrical characterization of biological solutions for implantable antenna design;2023 24th International Conference on Applied Electromagnetics and Communications (ICECOM);2023-09-27

5. Toward Single Cell Tattoos: Biotransfer Printing of Lithographic Gold Nanopatterns on Live Cells;Nano Letters;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3