The evolutionary diversity of locomotor innovation in rodents is not linked to proximal limb morphology

Author:

Hedrick Brandon P.,Dickson Blake V.,Dumont Elizabeth R.,Pierce Stephanie E.

Abstract

AbstractRodents are the most species-rich order within Mammalia and have evolved disparate morphologies to accommodate numerous locomotor niches, providing an excellent opportunity to understand how locomotor innovation can drive speciation. To evaluate the connection between the evolutionary success of rodents and the diversity of rodent locomotor ecologies, we used a large dataset of proximal limb CT scans from across Myomorpha and Geomyoidea to examine internal and external limb shape. Only fossorial rodents displayed a major reworking of their proximal limbs in either internal or external morphology, with other locomotor modes plotting within a generalist morphospace. Fossorial rodents were also the only locomotor mode to consistently show increased rates of humerus/femur morphological evolution. We propose that these rodent clades were successful at spreading into ecological niches due to high behavioral plasticity and small body sizes, allowing them to modify their locomotor mode without requiring major changes to their proximal limb morphology.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3