Author:
Liu Jessie,Gallego Blanca,Barbieri Sebastiano
Abstract
AbstractDeep neural networks are increasingly being used for computer-aided diagnosis, but erroneous diagnoses can be extremely costly for patients. We propose a learning to defer with uncertainty (LDU) algorithm which identifies patients for whom diagnostic uncertainty is high and defers them for evaluation by human experts. LDU was evaluated on the diagnosis of myocardial infarction (using discharge summaries), the diagnosis of any comorbidities (using structured data), and the diagnosis of pleural effusion and pneumothorax (using chest x-rays), and compared with ‘learning to defer without uncertainty information’ (LD) and ‘direct triage by uncertainty’ (DT) methods. LDU achieved the same F1 score as LD but deferred considerably fewer patients (e.g. 36% vs. 69% deferral rate for diagnosing pleural effusion with an F1 score of 0.96). Furthermore, even when many patients were assigned the wrong diagnosis with high confidence (e.g. for the diagnosis of any comorbidities) LDU achieved a 17% increase in F1 score, whereas DT was not applicable. Importantly, the weight of the defer loss in LDU can be easily adjusted to obtain the desired trade-off between diagnostic accuracy and deferral rate. In conclusion, LDU can readily augment any existing diagnostic network to reduce the risk of erroneous diagnoses in clinical practice.
Funder
University of New South Wales
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020).
2. Raghu, M. et al. The Algorithmic Automation Problem: Prediction, Triage, and Human Effort. (2019). arXiv:1903.12220
3. Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration of modern neural networks. Int. Conf. Mach. Learn. PMLR 70, 1321–1330 (2017).
4. Raghu, M. et al. Direct Uncertainty Prediction for Medical Second Opinions. (2018). arXiv:1807.01771
5. Cortes, C., DeSalvo, G., Mohri, M. Learning with rejection. in International Conference on Algorithmic Learning Theory. 67–82. (Springer, 2016).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献