Author:
Syuhada Ibnu,Hauwali Nikodemus Umbu Janga,Rosikhin Ahmad,Sustini Euis,Noor Fatimah Arofiati,Winata Toto
Abstract
AbstractIn this work, we present the bond order redefinition needed to reduce the inherent noise in order to enhance the accuracy of molecular dynamics simulations. We propose defining the bond order as a fraction of energy distribution. It happens due to the character of the material in nature, which tries to maintain its environment. To show the necessity, we developed a factory empirical interatomic potential (FEIP) for carbon that implements the redefinition with a short-range interaction approach. FEIP has been shown to enhance the accuracy of the calculation of lattice constants, cohesive energy, elastic properties, and phonons compared to experimental data, and can even be compared to other potentials with the long-range interaction approach. The enhancements due to FEIP can reduce the inherent noise, then provide a better prediction of the energy based on the behaviour of the atomic environment. FEIP can also transform simple two-body interactions into many-body interactions, which is useful for enhancing accuracy. Due to implementing the bond order redefinition, FEIP offers faster calculations than other complex interatomic potentials.
Funder
Research, Community Services, and Innovation Program (P3MI) ITB research grant
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献