Rapid Synthesis of Quantum-Sized Organic–Inorganic Perovskite Nanocrystals in Glass

Author:

Shinozaki Kenji,Kawano NaokiORCID

Abstract

AbstractA bulk sample of an organicinorganic (OI) perovskite crystal of (C6H5C2H4NH3)2PbBr4 with a layered structure showing excellent luminescent properties was rapidly synthesised. The raw materials of OI crystal were impregnated into nanoporous glass having 4-nm pores and dried, obtaining a translucent sample of OI nanocrystals in glass (OIiG). An absorbance shoulder was observed at E = 3.04 eV for OIiG, which was attributed to exciton bands, and photoluminescence (PL) duration times of τ1 = 2.8 ns and τ2 = 8.6 ns were recorded for OIiG. In contrast, for a single-crystal sample, E = 2.94 eV, τ1 = 4.1 ns, τ2 = 11.0 ns. Compared to those of the single-crystal sample, the OIiG has a higher absorbance energy, and the duration time was shorter. The exciton activation energy was 195 meV for OIiG, in contrast with 121 meV for single crystal. We propose that these changes are due to the size effect because the particle size (3–4 nm in diameter) in the OIiG is close to the Bohr radius of layer-structured OI crystals.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3