Impacts of environmental complexity on respiratory and gut microbiome community structure and diversity in growing pigs

Author:

Megahed AmeerORCID,Zeineldin Mohamed,Evans Kaleigh,Maradiaga Nidia,Blair Ben,Aldridge Brian,Lowe James

Abstract

Abstract The limited understanding of the interaction between rearing environment of the growing pig and the pig’s microbial community impedes efforts to identify the optimal housing system to maximize animal health and production. Accordingly, we characterized the impact of housing complexity on shaping the respiratory and gut microbiota of growing pig. A total of 175 weaned pigs from 25 litters were randomly assigned within liter to either simple slatted-floor (S) or complex straw-based rearing ecosystem (C). Beside the floor swabs samples, fecal swabs and mucosal scraping samples from bronchus, ileum, and colon were collected approximately 164 days post-weaning at the time of slaughter. The S ecosystem seems to increase the α-diversity of respiratory and gut microbiota. Moreover, the C-raised pigs showed 35.4, 89.2, and 60.0% reduction in the Firmicutes/Bacteroidetes ratio than the S-raised pigs at bronchus, ileum, and colon, respectively. The unfavorable taxa Psychrobacter, Corynebacterium, Actinobacteria, and Neisseria were the signature taxa of C environment-associated microbial community. Therefore, the microbiota of S-raised pigs seems to show higher density of the most essential and beneficial taxa than the C-raised pigs. We preliminarily conclude that increasing the physical complexity of rearing environment seems to provide suboptimal conditions for establishing a healthy microbial community in the growing pigs.

Funder

This project was supported by the internal USDA Hatch Grant provided by the College of Veterinary Medicine at University of Illinois Urbana-Champaign.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3