Author:
Altman Igor,Fomenko Elena,Agranovski Igor E.
Abstract
AbstractThe paper deals with the gas-phase formation of nanoparticles that is a fundamental process responsible for the condensed matter in the Universe, which also attracts attention due to its involvement in the particle synthesis for various nanotechnology applications. Previously reported results on MgO nano-oxides formed by Mg combustion showed a unique phenomenon coined “the condensation stagnation” that is the occurrence of critical clusters with suppressed growth. Here we focus on the effect of an external ionizer on this condensation growth stagnation. We show that the condensation stagnation occurring in the Mg particle flame subjected to a positive ion flux is similar to that in the unaffected flame. In contrast, applying negative charging significantly influences the state of stagnation of the system, i.e., no critical clusters are observed in the products sampled from the flame. The discovered critical behavior of the state of stagnation is explained in terms of the heat transfer between the condensed MgO nanoparticles and the surrounding gas, which efficiency depends on the sign of the nanoparticle charge. This dependence of the heat transfer efficiency on the nanoparticle charge is a new fundamental effect that should become the basis for accurate modeling in two-phase high-temperature systems.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献