Characterization and description of Faecalibacterium butyricigenerans sp. nov. and F. longum sp. nov., isolated from human faeces

Author:

Zou Yuanqiang,Lin Xiaoqian,Xue Wenbin,Tuo Li,Chen Ming-Sheng,Chen Xiao-Hui,Sun Cheng-hang,Li Feina,Liu Shao-wei,Dai Ying,Kristiansen Karsten,Xiao Liang

Abstract

AbstractExploiting a pure culture strategy to investigate the composition of the human gut microbiota, two novel anaerobes, designated strains AF52-21T and CM04-06T, were isolated from faeces of two healthy Chinese donors and characterized using a polyphasic approach. The two strains were observed to be gram-negative, non-motile, and rod-shaped. Both strains grew optimally at 37 °C and pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two strains clustered with species of the genus Faecalibacterium and were most closely related to Faecalibacterium prausnitzii ATCC 27768T with sequence similarity of 97.18% and 96.87%, respectively. The two isolates shared a 16S rRNA gene sequence identity of 98.69%. Draft genome sequencing was performed for strains AF52-21T and CM04-06T, generating genome sizes of 2.85 Mbp and 3.01 Mbp. The calculated average nucleotide identity values between the genomes of the strains AF52-21T and CM04-06T compared to Faecalibacterium prausnitzii ATCC 27768T were 83.20% and 82.54%, respectively, and 90.09% when comparing AF52-21T and CM04-06T. Both values were below the previously proposed species threshold (95–96%), supporting their recognition as novel species in the genus Faecalibacterium. The genomic DNA G + C contents of strains AF52-21T and CM04-06T calculated from genome sequences were 57.77 mol% and 57.51 mol%, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic characteristics, we conclude that both strains represent two new Faecalibacterium species, for which the names Faecalibacterium butyricigenerans sp. nov. (type strain AF52-21T = CGMCC 1.5206T = DSM 103434T) and Faecalibacterium longum sp. nov. (type strain CM04-06T = CGMCC 1.5208T = DSM 103432T) are proposed.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3