Improving remote material classification ability with thermal imagery

Author:

Großmann Willi,Horn Helena,Niggemann Oliver

Abstract

AbstractMaterial recognition using optical sensors is a key enabler technology in the field of automation. Nowadays, in the age of deep learning, the challenge shifted from (manual) feature engineering to collecting big data. State of the art recognition approaches are based on deep neural networks employing huge databases. But still, it is difficult to transfer these latest recognition results into the wild—various lighting conditions, a changing image quality, or different and new material classes are challenging complications. Evaluating a larger electromagnetic spectrum is one way to master these challenges. In this study, the infrared (IR) emissivity as a material specific property is investigated regarding its suitability for increasing the material classification reliability. Predictions of a deep learning model are combined with engineered features from IR data. This approach increases the overall accuracy and helps to differentiate between materials that visually appear similar. The solution is verified using real data from the field of automatized disinfection processes.

Funder

Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference38 articles.

1. Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3, 610–621. https://doi.org/10.1109/TSMC.1973.4309314 (1973).

2. Balakrishnan, K., Swathy, R. & Subha, T. D. Automatic waste segregator and monitoring system. J. Microcontroll. Eng. Appl. 3, www.researchgate.net/publication/317720527 (2016).

3. Ghassemi, N. et al. Material recognition for automated progress monitoring using deep learning methods (preprint submitted). J. Adv. Eng. Inf. https://arxiv.org/abs/2006.16344 (2020).

4. Ghosh, A., Ehrlich, M., D., L. & C., R. Unsupervised super-resolution of satellite imagery for high fidelity material label transfer. In IGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium, 5144–5147, https://doi.org/10.1109/IGARSS.2019.8900639(2019).

5. Erickson, Z., Chernova, S. & Kemp, C. Semi-supervised haptic material recognition for robots using generative adversarial networks. In Proceedings of the 1st Annual Conference on Robot Learning, vol. 78 of Proceedings of Machine Learning Research, 157–166, https://proceedings.mlr.press/v78/erickson17a.html (PMLR, 2017).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3