Using deep learning models to analyze the cerebral edema complication caused by radiotherapy in patients with intracranial tumor

Author:

Chao Pei-Ju,Chang Liyun,Kang Chen-Lin,Lin Chin-Hsueh,Shieh Chin-Shiuh,Wu Jia-Ming,Tseng Chin-Dar,Tsai I-Hsing,Hsu Hsuan-Chih,Huang Yu-Jie,Lee Tsair-Fwu

Abstract

AbstractUsing deep learning models to analyze patients with intracranial tumors, to study the image segmentation and standard results by clinical depiction complications of cerebral edema after receiving radiotherapy. In this study, patients with intracranial tumors receiving computer knife (CyberKnife M6) stereotactic radiosurgery were followed using the treatment planning system (MultiPlan 5.1.3) to obtain before-treatment and four-month follow-up images of patients. The TensorFlow platform was used as the core architecture for training neural networks. Supervised learning was used to build labels for the cerebral edema dataset by using Mask region-based convolutional neural networks (R-CNN), and region growing algorithms. The three evaluation coefficients DICE, Jaccard (intersection over union, IoU), and volumetric overlap error (VOE) were used to analyze and calculate the algorithms in the image collection for cerebral edema image segmentation and the standard as described by the oncologists. When DICE and IoU indices were 1, and the VOE index was 0, the results were identical to those described by the clinician.The study found using the Mask R-CNN model in the segmentation of cerebral edema, the DICE index was 0.88, the IoU index was 0.79, and the VOE index was 2.0. The DICE, IoU, and VOE indices using region growing were 0.77, 0.64, and 3.2, respectively. Using the evaluated index, the Mask R-CNN model had the best segmentation effect. This method can be implemented in the clinical workflow in the future to achieve good complication segmentation and provide clinical evaluation and guidance suggestions.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3