A self-adaptive attraction and repulsion-based naked mole-rat algorithm for energy-efficient mobile wireless sensor networks

Author:

Singh Supreet,Singh Urvinder,Mittal Nitin,Gared Fikreselam

Abstract

AbstractNaked mole-rat algorithm (NMRA) is a swarm intelligence-based algorithm that draws inspiration from the mating behaviour of mole rats (workers and breeders). This approach, which is based on the ability of breeders to reproduce with the queen, has been utilized to tackle optimization problems. The algorithm, however, suffers from local optima stagnation problem and a slower rate of convergence in order to provide gobal optimal solution. This study suggests attraction and repulsion strategy based NMRA (ARNMRA) along with self-adaptive properties to avoid trapping of solution in local optima. This strategy is utilized to create new breeder rat solutions and mating factor $$(\lambda )$$ ( λ ) is made self-adaptive using simulated annealing (sa) based mutation operator. ARNMRA is evaluated on CEC 2005 numerical benchmark problems and found to be superior to other algorithms, including well-known ones like selective operation based GWO (SOGWO), opposition based laplacian equilibrium optimizer (OB-L-EO), improved whale optimization algorithm (IWOA), success-history based adaptive DE (SHADE) and original NMRA. Further, according to experimental results, the performance of ARNMRA is likewise superior to the NMRA for the CEC 2019 and CEC 2020 numerical problems. Convergence profiles and statistical tests (rank-sum test and Friedman test) are employed further to validate the experimental results. Moreover, this article extends the application of ARNMRA to address the data gathering aspect in mobile wireless sensor networks (MWSNs) with the goal of prolonging network lifetime and enhancing energy efficiency. In this MWSN-based protocol, a sensor node is elected as a cluster head based on factors like mobility, residual energy, and connection time. The protocol aims to maximize the system lifetime by efficiently collecting data from all sensors and transmitting it to the base station. The study emphasizes the significance of considering dynamic node densities and speed when designing effective data-gathering protocols for MWSNs.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3