Author:
Fernando James R.,Walker Glenn D.,Park Thomas Kwan-Soo,Shen Peiyan,Yuan Yi,Reynolds Coralie,Reynolds Eric C.
Abstract
AbstractAssessment of enamel subsurface lesion remineralisation is essential for the evaluation of novel remineralisation technologies. The gold standard to assess subsurface mineral gain of enamel lesions is transverse microradiography (TMR). However, some studies have utilised surface microhardness (SMH) to evaluate efficacy of remineralisation agents. The aim of this study was to assess remineralisation of enamel subsurface lesions using TMR and SMH after in vitro treatment with calcium-containing technologies, and to test correlation between the TMR and SMH measurements. The parameters obtained from the TMR and SMH analyses of enamel subsurface remineralisation were not significantly correlated. Furthermore, the enamel subsurface remineralisation as measured by TMR was significantly correlated with the water-soluble calcium concentration of the remineralisation products. Scanning electron microscopy revealed surface precipitates formed by specific remineralisation treatments obfuscated accurate assessment of remineralisation by SMH. It was concluded that TMR is a more appropriate method for analysis of enamel subsurface remineralisation, and that SMH values of remineralised enamel should be interpreted with caution. Using TMR the level of remineralisation (%R) by the different technologies was CPP-ACP/F (31.3 ± 1.4%); CPP-ACP (24.2 ± 1.4%); CaSO4/K2HPO4/F (21.3 ± 1.4%); f-TCP/F (20.9 ± 1.0%); Nano-HA/F (16.3 ± 0.3%); Nano-HA (15.3 ± 0.6%) and F alone control (15.4 ± 1.3%).
Funder
Australian Dental Research Foundation
Department of Industry, Innovation and Science, Australian Government
National Health and Medical Research Council
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献