Piecewise-potential-field-based path planning method for fixed-wing UAV formation

Author:

Fang Yuxuan,Yao Yiping,Zhu Feng,Chen Kai

Abstract

AbstractThe multi-UAV path planning method based on artificial potential field (APF) has the advantage of rapid processing speed and the ability to deal with dynamic obstacles, though some problems remain—such as a lack of consideration of the initial heading constraint of the UAVs, making it easy to fall into a local minimum trap, and the path not being sufficiently smooth. Consequently, a fixed-wing UAV formation path planning method based on piecewise potential field (PPF) is proposed, where the problem of UAV formation flight path planning in different states can be solved by suitable design of the PPF function. Firstly, the potential field vector can be used to represent the potential field functions of obstacles and target points to meet the kinematic constraints of the UAV. Secondly, the local minimum region can be detected, the additional potential field vector being set to break away from this region. Finally, the change rules of the potential field vector of a UAV in the formation reconstruction scene can be designed, a smooth formation flight track being assured by adjusting the corresponding speed of each UAV track point. Considering the path planning of a five-UAV formation as an example, we conducted simulation experiments. The results showed that—compared with the existing methods based on APF—the results obtained using the PPF-based method considered the initial heading limits of the UAVs, the planned path being considerably smoother. Moreover, the proposed method could plan multiple UAV tracks, satisfying the known constraints without conflict in complex scenarios.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3