High spatial resolution prediction of tritium (3H) in contemporary global precipitation

Author:

Terzer-Wassmuth Stefan,Araguás-Araguás Luis J.,Copia Lorenzo,Wassenaar Leonard I.

Abstract

AbstractTritium (3H) in Earth’s precipitation is vigilantly monitored since historical nuclear bomb tests because of radiological protection considerations and its invaluable role as a tracer of the global water cycle in quantifying surface, groundwater, and oceanic fluxes. For hydrological applications, accurate knowledge of 3H in contemporary local precipitation is prerequisite for dating of critical zone water and calibrating hydrogeologic transport and groundwater protection models. However, local tritium input in precipitation is hard to constrain due to few 3H observation sites. We present new high-spatial resolution global prediction maps of multi-year mean 3H in contemporary “post-bomb” (2008–2018) precipitation by using a robust regression model based on environmental and geospatial covariates. The model accurately predicted the mean annual 3H in precipitation, which allowed us to produce global 3H input maps for applications in hydrological and climate modelling. The spatial patterns revealed natural 3H in contemporary precipitation sufficient for practical hydrological applications (1–25 TU) but variable across continental regions and higher latitudes due to cumulative influences of cyclical neutron fluxes, stratospheric inputs, and distance from tropospheric moisture sources. The new 3H maps provide a foundational resource for improved calibration of groundwater flow models and critical zone vulnerability assessment and provides an operational baseline for quantifying the potential impact of future anthropogenic nuclear activities and hydroclimatic changes.

Funder

International Atomic Energy Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3