Author:
Kelly Jack,Moyeed Rana,Carroll Camille,Luo Shouqing,Li Xinzhong
Abstract
AbstractAs the population ages, neurodegenerative diseases are becoming more prevalent, making it crucial to comprehend the underlying disease mechanisms and identify biomarkers to allow for early diagnosis and effective screening for clinical trials. Thanks to advancements in gene expression profiling, it is now possible to search for disease biomarkers on an unprecedented scale.Here we applied a selection of five machine learning (ML) approaches to identify blood-based biomarkers for Alzheimer's (AD) and Parkinson's disease (PD) with the application of multiple feature selection methods. Based on ROC AUC performance, one optimal random forest (RF) model was discovered for AD with 159 gene markers (ROC-AUC = 0.886), while one optimal RF model was discovered for PD (ROC-AUC = 0.743). Additionally, in comparison to traditional ML approaches, deep learning approaches were applied to evaluate their potential applications in future works. We demonstrated that convolutional neural networks perform consistently well across both the Alzheimer's (ROC AUC = 0.810) and Parkinson's (ROC AUC = 0.715) datasets, suggesting its potential in gene expression biomarker detection with increased tuning of their architecture.
Funder
Plymouth University
H2020 Marie Skłodowska-Curie Actions
UK EPSRC
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献