Unveiling the dynamic of nitrogen through migration and transformation patterns in the groundwater level fluctuation zone of a different hyporheic zone sediment

Author:

Abdulhamid Yusuf,Duan Lei,Yaqiao Sun,Hu Jinmei

Abstract

AbstractThis study investigates the impact of water levels and soil texture on the migration and transformation of nitrate (NO3-N) and ammonium (NH4+-N) within a soil column. The concentrations of NO3-N gradually decreased from an initial concentration of 34.19 ± 0.86 mg/L to 14.33 ± 0.77 mg/L on day 70, exhibiting fluctuations and migration influenced by water levels and soil texture. Higher water levels were associated with decreased NO3-N concentrations, while lower water levels resulted in increased concentrations. The retention and absorption capacity for NO3-N were highest in fine sand soil, followed by medium sand and coarse sand, highlighting the significance of soil texture in nitrate movement and retention. The analysis of variance (ANOVA) confirmed statistically significant variations in pH, dissolve oxygen and oxidation–reduction potential across the soil columns (p < 0.05). Fluctuating water levels influenced the migration and transformation of NO3-N, with distinct patterns observed in different soil textures. Water level fluctuations also impacted the migration and transformation of NH4+-N, with higher water levels associated with increased concentrations and lower water levels resulting in decreased concentrations. Among the soil types considered, medium sand exhibited the highest absorption capacity for NH4+-N. These findings underscore the significant roles of water levels, soil texture, and soil type in the migration, transformation, and absorption of nitrogen compounds within soil columns. The results contribute to a better understanding of nitrogen dynamics under varying water levels and environmental conditions, providing valuable insights into the patterns of nitrogen migration and transformation in small-scale soil column experiments.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3