Influence of bisphenol A on growth and metabolism of Vicia faba ssp. minor seedlings depending on lighting conditions

Author:

Kaźmierczak AndrzejORCID,Kornaś AndrzejORCID,Mościpan Małgorzata,Łęcka Justyna

Abstract

AbstractThe effect of one of anthropogenic pollutants, i.e., 4,4′-isopropylidenediphenol, called 2,2-bis (4-hydroxyphenyl) propane (BPA), at 30 and 120 mg L−1 concentrations in the darkness (DK) or dark/light (DK/LT) on growth and selected elements of metabolism of seedlings and leaf discs of Vicia faba ssp. minor was studied. Treatment with 120 mg L−1 BPA had greater effects which were reflected by increase in the number of necrotic changes in roots and stems as well as in leaf discs and reduction of the length of roots DK and DK/LT, and volume of roots in the DK group. However, minimal and no influence on the fresh and dry weight of roots and stems in plants growing under both types of lighting conditions were observed. In both DK and DK/LT groups these effects were correlated with reduced amounts of storage and cell wall-bound sugars as well as of proteins while in the DK/LT additionally with reduced soluble sugar levels in the roots and increased amounts of hydrogen peroxide and phenols in roots and stems as well as in treatment solutions, where these compounds were released. We suggest that endogenous phenols and BPA can be metabolised in roots and stems to quinones. It seems that TB-1,4-BQ, is the one of that of the five studied quinones. We expect that the results of this paper will help to answer the following question: does the phytomeliorative and phytosanitative V. faba ssp. minor plant is enough to be resistant on negative effects, and to be useful to reduce increasing amount of BPA in the environment?

Funder

University of Lodz

Pedagogical University of Krakow

Institute of Heavy Organic Synthesis "Blachownia", Poland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3