Pollinator and floral odor specificity among four synchronopatric species of Ceropegia (Apocynaceae) suggests ethological isolation that prevents reproductive interference

Author:

Kidyoo AroonratORCID,Kidyoo ManitORCID,McKey DoyleORCID,Proffit MagaliORCID,Deconninck GwenaëlleORCID,Wattana Pichaya,Uamjan Nantaporn,Ekkaphan PaweenaORCID,Blatrix RumsaïsORCID

Abstract

AbstractPossession of flowers that trap fly pollinators is a conservative trait within the genus Ceropegia, in which pollination systems can be generalized or highly specialized. However, little is known about the role of plant–pollinator interactions in the maintenance of species boundaries. This study examined the degree of plant–pollinator specialization and identified the parameters responsible for specificity among four co-occurring Ceropegia species with overlapping flowering times. All investigated plant species were functionally specialized on pollination by Chloropidae and/or Milichiidae flies and each Ceropegia species was, in turn, ecologically highly specialized on only two pollinating fly morphospecies, though one plant species appeared more generalist. Species-specific fly attraction was due to the differences between plant species in floral scents, floral morphology, colour patterns, and presence of other functional structures, e.g., vibratile trichomes, which were shown to contribute to pollinator attraction in one study species. The combination of these olfactory and visual cues differentially influenced pollinator preferences and thus hindered heterospecific visitation. Furthermore, a pollinator exchange experiment also highlighted that species integrity is maintained through efficient ethological isolation (pollinator attraction). The mechanical isolation mediated by the fit between floral morphology and size and/or shape of fly pollinators appears less pronounced here, but whether or not the morphological match between male (pollinium) and female (guide rails) reproductive organs can impede hybridization remains to be investigated.

Funder

Franco-Thai Mobility Programme

Grant for Research, Rachadaphiseksomphot Endowment Fund 2020

International Emerging Actions

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3