Characterization of the high-pressure and high-temperature phase diagram and equation of state of chromium

Author:

Anzellini Simone,Errandonea Daniel,Burakovsky Leonid,Proctor John E.,Turnbull Robin,Beavers Christine M.

Abstract

AbstractThe high-pressure and high-temperature phase diagram of chromium has been investigated both experimentally (in situ), using a laser-heated diamond-anvil cell technique coupled with synchrotron powder X-ray diffraction, and theoretically, using ab initio density-functional theory simulations. In the pressure–temperature range covered experimentally (up to 90 GPa and 4500 K, respectively) only the solid body-centred-cubic and liquid phases of chromium have been observed. Experiments and computer calculations give melting curves in agreement with each other that can both be described by the Simon–Glatzel equation $$T_{m}(P) = 2136K (1 + P/25.9)^{0.41}$$ T m ( P ) = 2136 K ( 1 + P / 25.9 ) 0.41 . In addition, a quasi-hydrostatic equation of state at ambient temperature has been experimentally characterized up to 131 GPa and compared with the present simulations. Both methods give very similar third-order Birch–Murnaghan equations of state with bulk moduli of 182–185 GPa and respective pressure derivatives of 4.74–5.15. According to the present calculations, the obtained melting curve and equation of state are valid up to at least 815 GPa, at which pressure the melting temperature is 9310 K. Finally, from the obtained results, it was possible to determine a thermal equation of state of chromium valid up to 65 GPa and 2100 K.

Funder

Ministerio de Ciencia e Innovación

European Regional Development Fund

Generalitat Valenciana

Juan de la Cierva Formacion

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3