Influence of the argon admixture on the reactive oxide species formation inside an atmospheric pressure oxygen plasma jet

Author:

Barkhordari Ali,Karimian Saeed,Shahsavari Sajedeh,Krawczyk Dorota,Rodero Antonio

Abstract

AbstractIn this work, a new atmospheric pressure plasma generated in a wire-to-multiwire dielectric barrier discharge on pure oxygen is introduced. This special geometry of 13 wires (one central wire and 12 ones on the external tube) is feeding by a radio frequency (RF) power (13.56 MHz, 1 kW) and produces a stable discharge. The capacity of this device to produce oxygen reactive species and the influence of Ar gas mixture (1–3%) on this production are investigated. The main characteristics of this DBD plasma are measured using optical emission spectroscopy techniques. The rotational, vibrational, and excitation temperatures along with the electron density are determined from OH (A2Σ → X2Π) band and the Stark broadening of the hydrogen atomic line at 486.1 nm, respectively. The temporal evolution and spatial distribution of charged and reactive species in this plasma are also numerically studied by a Global scheme and a two-dimension fluid model based on drift–diffusion approximation. A kinetic dominated by electron collisions is obtained for this plasma. The generation and movement of electrons, positive and negative ions in the wire-to-multiwire configuration are analyzed and discussed according to changes the electric field and plasma frequency. It is shown that the density of both charged and reactive species increases by adding a small amount of argon to the oxygen plasma while the electron temperature reduces in this configuration. A high level of agreement is observed between the experimental and simulation results for the electron density and temperature in this DBD plasma.

Funder

The Polish National Agency for Academic Exchange

FEDER program

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3