On the reproducibility of electron-beam lithographic fabrication of photonic nanostructures

Author:

Sahoo Pankaj K.,Coates Eve,Silver Callum D.,Li Kezheng,Krauss Thomas F.

Abstract

AbstractPhotonic nanostructures such as gratings and ring resonators have become ubiquitous building blocks in Photonics. For example, they are used in filters, they resonantly enhance signals and act as grating couplers. Much research effort is invested in using such structures to create novel functionalities, which often employs electron-beam lithography. An intrinsic issue in this field is the ability to accurately achieve a specific operating wavelength, especially for resonant systems, because nanometer-scale variations in feature size may easily detune the device. Here, we examine some of the key fabrication steps and show how to improve the reproducibility of fabricating wavelength scale photonic nanostructures. We use guided mode resonance grating sensors as our exemplar and find that the exposure condition and the development process significantly affect the consistency of the resonance wavelength, amplitude, and sensitivity of the sensor. By having careful control over these factors, we can achieve consistent performance for all the sensors studied, with less than 10% variation in their resonance behaviors. These investigations provide useful guidelines for fabricating nanostructures more reliably and to achieve a higher success rate in exploratory experiments.

Funder

EPSRC

Welcome Trust

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3