Accelerating river blindness elimination by supplementing MDA with a vegetation “slash and clear” vector control strategy: a data-driven modeling analysis

Author:

Smith Morgan E.,Bilal Shakir,Lakwo Thomson L.,Habomugisha Peace,Tukahebwa Edridah,Byamukama Edson,Katabarwa Moses N.,Richards Frank O.,Cupp Eddie W.,Unnasch Thomas R.,Michael Edwin

Abstract

Abstract Attention is increasingly focusing on how best to accelerate progress toward meeting the WHO’s 2030 goals for neglected tropical diseases (NTDs). For river blindness, a major NTD targeted for elimination, there is a long history of using vector control to suppress transmission, but traditional larvicide-based approaches are limited in their utility. One innovative and sustainable approach, “slash and clear”, involves clearing vegetation from breeding areas, and recent field trials indicate that this technique very effectively reduces the biting density of Simulium damnosum s.s. In this study, we use a Bayesian data-driven mathematical modeling approach to investigate the potential impact of this intervention on human onchocerciasis infection. We developed a novel “slash and clear” model describing the effect of the intervention on seasonal black fly biting rates and coupled this with our population dynamics model of Onchocerca volvulus transmission. Our results indicate that supplementing annual drug treatments with “slash and clear” can significantly accelerate the achievement of onchocerciasis elimination. The efficacy of the intervention is not very sensitive to the timing of implementation, and the impact is meaningful even if vegetation is cleared only once per year. As such, this community-driven technique will represent an important option for achieving and sustaining O. volvulus elimination.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference71 articles.

1. World Health Organization. Integrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases. (2017).

2. World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases: a roadmap for implementation: executive summary. (2012).

3. Reimer, L. J. et al. Fit for purpose: do we have the right tools to sustain NTD elimination? BMC Proc. 9, S5 (2015).

4. Klepac, P., Funk, S., Hollingsworth, T. D., Metcalf, C. J. E. & Hampson, K. Six challenges in the eradication of infectious diseases. Epidemics 10, 97–101 (2015).

5. Klepac, P., Metcalf, C. J., McLean, A. R. & Hampson, K. Towards the endgame and beyond: complexities and challenges for the elimination of infectious diseases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120137 (2013).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3